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ABSTRACT 

 

THE IMPACT OF COMPUTER INVESTMENT AND COMPUTER NETWORK USE ON 
PRODUCTIVITY 

 
B.K. Atrostic and Sang Nguyen 

 
Center for Economic Studies 

U.S. Census Bureau 
 
 
 
 

Researchers in a large empirical literature find significant relationships between 
computers and labor productivity, but the estimated size of that relationship varies considerably.  
In this paper, we estimate the impact of computers and particularly of computer networks on 
plant-level productivity in U.S. manufacturing.  Using new data on computer investment, we 
develop a proxy measure of computer inputs.  We also develop a proxy measure of the plant’s 
total capital stock from its book value, and clarify the conditions under which it is likely to be a 
good proxy for capital inputs.  We find that computer networks and computer inputs have 
separate, positive, and significant relationships to U.S. manufacturing plant-level productivity.  
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I. Introduction 

 

Researchers in a large empirical literature find significant relationships between 

computers and labor productivity, but the estimated size of that relationship varies considerably.  

Stiroh (2002) reviews twenty recent empirical studies, conducts a meta-analysis to assess the 

sources of differences in their findings, and concludes that the divergence of estimates likely 

reflects differences among the studies themselves in model specification and econometric 

techniques.   Moreover, the way computers make their impact is not well understood.   

In this paper, we estimate the impact of computers and particularly of computer networks 

on plant-level productivity in U.S. manufacturing.  In our previous research (Atrostic and 

Nguyen 2002), we used the first survey data on the presence of computer networks in 

manufacturing plants, collected in the 1999 Computer Network Use Survey (CNUS), and found 

a positive and significant relationship between computer networks and productivity, controlling 

for other inputs to production, plant characteristics, and endogeneity of computer networks.  

However, the survey on computer networks did not collect information on the capital stocks of 

computers in these plants.  Measures of networks, when not used together with measures of 

computer inputs, may simply pick up the presence of computers or the intensity of computer use.   

The findings from our previous research may, therefore, be subject to omitted variable bias.   

In this paper, we link together plant-level data on the presence of computer networks 

from 1999 CNUS, computer investment from the 2000 Annual Survey of Manufactures (ASM), 

and book value of the plant’s capital stock from the 1997 Census of Manufactures (CM).  Using 

the linked data, we develop a proxy measure of computer inputs from the plant’s computer 

investment and a proxy measure of the plant’s total capital stock from its book value, and clarify 

the conditions under which these measures are likely to be good proxies for capital inputs.  We 

find that computer networks and computer inputs have separate, positive, and significant 

relationships to U.S. manufacturing plant-level productivity.  

 

 

 

 



  

II. Computers, Computer Networks, and Productivity:  Measurement Issues 

 

Estimating plant-level relationships among computers, computer networks, and 

productivity requires overcoming many empirical challenges.  Researchers must address the 

substantial standard measurement issues that arise in using plant-level data (see Griliches 1994 

and Griliches and Mairesse 1995).  Specific to the quest to understand the economic role of 

computers, electronic devices, and computer networks are yet more data gaps, including 

measures of computers and related information technologies, and computer networks (see, for 

example, Stiroh 2002; Haltiwanger and Jarmin 2001; Atrostic, Gates, and Jarmin 2000).  The 

resulting empirical literature on computers and productivity is plagued with measurement issues 

that likely contribute to its divergent findings (Stiroh 2002).   In this section, we focus on three 

specific issues, measuring capital inputs in general, measuring computer capital inputs, and 

estimating the effect of computer networks on productivity. 

 

A. Measuring Capital Input 

Our model requires measures of capital inputs or capital services.  We want to control in 

our estimates for the plant’s total stock of physical capital.  For capital in general, measures of 

service flows can be generated from information on the capital stock, usually built up from data 

on capital investments using the perpetual inventory method.  For time series analysis of plant-

level data, one important problem is that assets are valued at their purchase price in book values, 

regardless of the timing of that purchase.  In principle, adjustments to the book values of capital 

stock for plants that are not new in the current year could bring these values closer to measures 

of the plant’s capital stock.1   Adjustments based on book values and capital expenditures are 

made harder by data gaps for recent years.  Book values are now collected less frequently in U.S. 

manufacturing, and for a smaller group of plants, than in the past.  Book values of physical 

                                              
1 For example, Baily, Hulten and Campbell (1992) construct capital input measures based on perpetual inventory 
methods.  Despite the potentially large empirical gap between book values and service flows measures, they find 
that both measures lead to similar empirical results for topics such as productivity dispersion.  Stiroh (2002), in a 
more recent analysis, also finds little empirical difference.  Other researchers (e.g.,Dunne et al. 2000; and Doms, 
Dunne, and Troske 1997), therefore, often use capital measures based on book values, whose homely virtue is that 
they are available.   
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capital (buildings and machinery) were collected annually in the CM and ASM until 1986.  Since 

then, these data are collected only in the ASM in the Economic Census years (e.g., 1987, 1992, 

and 1997), and so are not even available for all plants covered by the economic census.   

We avoid these problems in time-series analyses by using cross-section data.  Many 

cross-section studies use the book values of the plant’s total capital stock directly as a proxy for 

service flows (e.g., McGuckin et al., 1998 and Greenan, Mairesse, and Topiol-Bensaid 2001).  

However, the book values that were collected in the ASM for 1997 included not just new plants, 

but all plants in the ASM, where the average age is roughly 10 years.  We avoid this problem by 

limiting our sample to plants that are newly opened in 1997.  Because these plants are new, we 

can assume that the book value equals the value of their stock of capital.  

 

B. Measuring Computer Input 

Similar to conventional (physical) capital, computers should be treated as a separate 

capital input in production and productivity analysis (e.g., Jorgenson and Stiroh 2000, Oliner and 

Sichel 2001).  Computer services are the theoretically appropriate measure of computer input.  

Measures approximating this service flow must be constructed.  For buildings and structures, and 

for machinery and equipment, proxies for service flows can be constructed from the book values 

collected for these forms of capital.  However, a different approach is required for computer 

capital because its book value is not collected separately.   

Computer service flows are normally estimated from measures of the computer capital 

stock in aggregate and industry-level productivity studies [e.g., Jorgenson, Ho, and Stiroh 2002; 

Triplett and Bosworth 2002).  Studies using plant-level data often approximate computer service 

flows with measures of computer investment.  Computer investment per worker is used as a 

proxy for computer input per worker in the plant in Berman, Bound, and Griliches (1994).  It has 

been used as a measure of the presence of computers, or of computer intensity, or as a measure 

of the intensity of technology use in many recent studies.  For example, Doms, Dunne, and 

Troske (1997) control for computer investment in their analysis of how adopting various 

technologies affects a series of plant-level economic outcomes.  The multi-faceted analysis in 

Dunne et al. (2000) examines the role of computer investment in the dispersion of productivity 

and wages in U.S. manufacturing.  Haltiwanger, Jarmin, and Schank (2003) use computer 

investment as a factor separate from total equipment investment in estimating productivity.   
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Using a plant’s computer investment as a proxy for computer service flows requires the 

assumption that this investment is proportional to its stock of computer capital.  This assumption 

allows researchers to use the only measure at hand.  However, it may not be correct.  Total plant-

level investment typically is lumpy, while service flows are not.  For example, Cooper, 

Haltiwanger, and Power (1999) find that plant-level investment surges are followed by periods of 

low investment.  On the other hand, computer investment may be less lumpy than other 

investment if co-invention (investment in developing and implementing software that engages 

and connects computers and adapts them to plant-specific uses, e.g., Bresnahan and Greenstein 

1997) continues in periods when there is no investment in computer hardware and software.  

Because the scale of co-invention over the life of the computer asset can be as much as the 

original computer investment (Bresnahan and Greenstein 1997), it is not clear whether the joint 

effect is to smooth or exacerbate lumpiness.   However, any effect of co-invention on actual 

computer investment will not be captured in our measure because only data for investments in 

computer hardware and peripherals are collected in the 2000 ASM.   

Finally, computer investment is collected occasionally, and in recent years was not 

collected at the same time as book values of capital.  Computer investment data was collected in 

the CM for 1977 through 1992, but was not collected in 1997, and was only collected again in 

the ASM in 2000 and 2001.   

 

C. Developing a Sample with Good Proxies for Computer and Capital Inputs  

Starting from the sample of plants for which we have information on their use of 

computer networks, computer investment, and book values of total capital, we develop a sample 

for which our measures of computer and total capital are likely to be good proxies for computer 

and total capital inputs.   Based on the insight that book value more closely measures capital 

service flows for new plants, we create a sample of plants that are new in the 1997 CM.   

We define a sample of plants that first appeared in the 1997 CM because that allows us to 

assume that the book values of capital reported in 1997 are equal to the value of the plant’s 

capital stock.  That is, when a plant is new in 1997, KT1997 ≡ BVT1997, where K is the value of the 

plant’s capital stock, T indexes total capital, and BV is book value.  We first link all observations 

that have both information on computer networks in the 1999 CNUS and information on 

computer investment in the 2000 ASM.  Because the 1999 CNUS and 2000 ASM samples each 
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are drawn from a sample frame based on the 1997 CM, the probability-proportionate-to-size 

sampling strategy leads to a high overlap between the two samples, and the 1999 – 2000 linking 

rate is high.2  Roughly one-third of the linked plants report positive computer investment.   This 

response pattern is consistent the historical pattern when this item was collected in 1977, 1982, 

1987, and 1992 (e.g., Dunne et al. 2000).  We exclude plants that either do not report computer 

investment or report an amount of zero.3  This means that the plants in our sample all have 

positive computer investment.  We select plants in the linked sample and check that they first 

appeared in the 1997 CM (that is, they did not appear in the 1992 CM or the 1993 through 1996 

ASMs).   

We make the standard assumption that capital services are proportional to the value of the 

capital stock, so we can use the book values of total capital these plants report in the 1997 CM as 

a proxy for their total capital services in 2000, S(KT2000).   

(1) S(KT2000) ≈ π · BVT1997 · δ1. 

The proportionality factor, π, represents services per unit of capital.  The approximation error, δ1, 

increases as 1997 differs from the year when the plant was new.  That is, δ1τ  › δ1υ when (1997 – 

τ) › (1997 – υ), for plants new in year τ compared to year υ.  The approximation error 

encompasses the decline in efficiency as the 1997 capital stock ages, because it yields fewer 

capital services that it did when new.  

We use the computer investment of these plants in 2000 as a proxy for their computer 

capital stock in 2000.  That is, we assume  

(2) Kc2000 ≈  δ2  · I c2000, 

where Kc2000 represents the plant’s actual computer capital stock; δ2 is a constant, assumed to be 

the same among these plants because they opened in the same year, 1997; and I c2000 is the plant’s 

computer investment in 2000.  

This sample definition yields 849 observations containing the information we need to 

create measures of computer networks, computer and total capital, and other inputs.  It is 

conceptually the best sample that the data will allow us to create.  We address the concern that 

                                              
2 Haltiwanger, Jarmin, and Schank (2003) find little sample reduction when they link the 1999 CNUS and the 2000 
ASM.  Their final sizes are range from 22,700 to 22,900, depending on specification.   
3 The data as entered in the CES data storage system do not allow us to distinguish between plants that do not report 
computer investment and those that report zero, so we exclude both. 
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the sample is small by constructing a second sample based on a broader alternative definition of 

new that includes plants between three and eight years old.  The broader definition includes 

plants that first appeared in the 1993 through 1996 ASMs and have positive computer 

investment.  These plants are between three and eight years old in 2000, below the 10-year 

average age of plants in the 1999 CNUS – 2000 ASM linked data set.4  The value of the total 

capital approximation error, δ1, will be higher for these plants than for plants that are new in 

1997, but including them yields a larger sample of 1,755 observations.    

To test the importance of using the sample of plants for which book values are a good 

proxy for the capital stock, we use the linked data to construct a data set containing plants of all 

ages.  Our sample of plants of all ages that report positive computer investment has 12,386 

observations.  

 
 

D. Estimating the Impact of Computer Networks  

We want to estimate the impact of computer networks because they may be a new 

technology that shifts the production function.  Simply using computers seems unlikely to be 

such a shift, since computers have been in commercial use in the U.S. for fifty years, and they 

might be viewed as just another capital input.  Computer networks also have been in used for 

decades.  But the networks that came into use more recently are thought to be qualitatively 

different (e.g., Bresnahan and Greenstein 1997).  Brynjolfsson and Hit (2000) argue that the 

effects of organizational changes caused by the newer computer networks may rival the effects 

of changes in the production process.  Viewed this way, computer networks are a productivity-

enhancing general-purpose technology (Breshnahan and Trajtenberg 1995).  The question for 

productivity and other measures of economic performance may no longer be whether computers 

matter, but whether it matters how computers are used.   

Despite the importance of understanding whether computer networks matter for 

productivity, information on networks is scarce.  The computer network information collected in 

the 1999 CNUS is the first such collection for a large and representative national sample of 

plants in U.S. manufacturing.  But because these data are new, we also want to be sure that they 

                                              
4 Haltiwanger, Jarmin, and Schank (2003). 
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actually measure something distinct from computer inputs.  The information on the presence of 

computer networks of course is but one indicator of how plants use computers.  However, it also 

is a relatively simple and clear one.  It is worth determining whether a measure of the presence of 

computer networks has empirical value because relatively little information needs to be collected 

to construct it.5  If this measure alone can convey important additional information about firm 

heterogeneity in the uses of computers, and in particular on the newest uses, there is an argument 

to be made for considering eking out room for its components in survey instruments and 

respondent burden calculations.  

We want to see whether both computers and networks have a statistically significant 

relationship to productivity.  Because a standard empirical finding in plant-level cross-section 

estimates is that the omitted variables problem may be serious, estimates of the impact of 

computer networks need to take account of the plant’s computer inputs.  

The 1999 CNUS network data, together with the computer investment information 

collected in the 2000 ASM, allow us for the first time to specify an empirical model of labor 

productivity with separate measures of computer inputs and computer networks.  We use 

information collected in the 1999 CNUS to create a computer network dummy variable that takes 

on a value of one if the plant reports having a computer network, and zero otherwise.  Networks 

can be of several kinds, including Electronic Data Interchange and the Internet, and plants can 

have multiple kinds of networks. 

 

 

III. Empirical Implementation 

 

In our empirical work, we use the three samples described in the preceding section.  The 

primary data set in our analysis consists of the 849 manufacturing plants that have computers, are 

new in 1997, and for which we have computer investment and network information.   To test the 

robustness of the empirical results to alternative cohort definitions that the data allow us to 

                                              
5 The 1999 CNUS did not ask a single question about whether a plant had a network.  It asked the plant to check 
whether it used each of several kinds of networks (e.g., Internet, Electronic Data Interchange).  Plants can use more 
than one kind of network.  We construct our network measure from those separate responses. 
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construct, we use the sample of 1,755 plants that are new since 1992 and have computer 

investment.  We also use the data set of 12,386 plants of all ages that have computer investment.  

It allows us to assess the empirical importance of using book values as proxies for capital 

services when they are unlikely to be good measures.  Because information on computer 

networks was collected only in 1999, our analyses are all cross-sectional.  

 

A.  Equation Specification 

To assess the relationship between computer networks and computer input on plants’ 

labor productivity, we estimate the following equation:                             

 (3)      Log(Q/L) =  β0 + β1CNET + α1clog(Kc/L) + α1nclog(Knc/L) + α2log(M/L) 

                 + α3log(MIX) + α4MULTI +  ∑γjSIZEj  +  ∑λiINDi + ε     

where Q, Kc, Knc, L, and M represent output, computer capital input, non-computer capital input, 

labor, and materials.  CNET denotes computer networks.  SIZE denotes the size class of the 

plant.  MIX denotes the mix of production and non-production workers, and MULTI represents 

plants that belong to a multi-unit firm.  IND denotes three-digit NAICS industries.   

Our model distinguishes between the productive effect of computer input in the plant, and 

a technological shift resulting from using computer networks.  Equation (3) directly relates 

computer networks and computer capital to (log) labor productivity.  In this formulation, β1 is 

one of our two parameters of interest.  It can be interpreted as measuring the effect of computer 

networks on labor productivity, controlling for the intensities of computer and non-computer 

capital (Kc/L and Knc/L), and materials intensity (M/L).  

 The second parameter of interest is α1c, the coefficient on the intensity of computer 

capital.  This coefficient can be interpreted a measure of the flow of services from the stock of 

computer capital, controlling for the presence of computer networks and other inputs.  Our model 

differs from those in most previous related plant-level studies in that ours is a three-factor 

production function in which output is defined as gross output (rather than value added) and 

materials are incorporated as a separate input in production. 

In this paper, we focus on estimating whether labor productivity is related both to 

computer networks and computer inputs.  Labor productivity is defined as output per worker, 

(Q/L).  We use total value of shipments (TVS) as a measure of Q.  Our measure of labor, L, is 

the total number of employees in the plant.   We described earlier how we use the CNUS, ASM, 
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and CM to specify computer networks, computer inputs, and total capital inputs.  Our empirical 

specification in equation (3) uses the intensities of computer and capital input.  Computer 

investment divided by employment, and book value of capital divided by employment, are the 

variables included in the reported estimations.  To estimate the specification in equation (3), we 

also need information on other inputs and plant characteristics.  We use the same empirical 

specifications of materials, skill mix, size, multi-unit plant status, and industry as Atrostic and 

Nguyen (2002), and describe them in the Appendix.   

 

B. Data  

The CNUS data we use in this study are part of a Census Bureau measurement initiative 

to fill some of those data gaps on the growing use of electronic devices and networks in the 

economy (Mesenbourg 2001).  The appendix contains more information on the 1999 CNUS, 

2000 ASM, and the 1992 and 1997 CM.     

 

 

IV. Empirical Findings  

 

We estimate three alternative specifications of labor productivity.  The preferred 

specification includes both computer networks and computer inputs.  A specification that 

parallels our prior research includes computer networks but not computer inputs.   The third 

specification parallels specifications in the literature that include computer inputs but not 

computer networks.  We estimate these specifications for the cohort of 849 plants that newly 

opened their operations in 1997 and had positive computer investment in 2000, and report the 

results in Table 1.  To show whether it matters that we restrict our sample to plants that were new 

in 1997 (because 1997 book value should correctly measure their total capital stock), we estimate 

the same three specifications using two other samples.  Estimates from the sample of 1,755 

relatively new plants that opened between 1993 and 1997 and have positive computer investment 

in 2000 are reported in Table 2.  Estimates from the sample of 12,836 plants of all ages that have 

positive computer investment in 2000 are also reported in Table 2. 

Computer investment and computer networks both have positive and significant 

relationships to labor productivity in estimates from our preferred specification, as reported in 
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column (1) of Table 1.   The coefficient on computer networks is 0.117, controlling for computer 

and other inputs and plant characteristics.6  Computer investment has a separate and significant 

effect, with a coefficient of computer intensity (Kc/L) of 0.050.  Computer networks are 

significant when they enter the estimation alone, and the coefficient of 0.136, reported in column 

(2), is higher than when computer investment is included.  When computer networks are 

excluded and computer investment is included alone, computer intensity is significant, with the 

slightly higher coefficient of 0.052 as shown in column (3) of Table 1.7  These estimates show 

that it matters empirically whether data are available to measure both computer networks and 

computer inputs.  Coefficients of both computer measures are significant.  However, each 

coefficient also is higher in the specification that excludes the other measure, suggesting that 

when each is used alone, it picks up part of the impact of the other.   

The coefficient of one other variable, MIX, the ratio of non-production to production 

workers, changes appreciably across these specifications.  In our preferred specification that 

includes both computer investment and networks (column (1) of Table 1), the coefficient of MIX 

is 0.040, but is not significant.  An estimate similar in size, 0.044, and in lack of significance, 

comes from the specification that includes only computer investment (column (3)).  By 

comparison, in the specification that only includes computer networks, the coefficient of MIX 

increases to 0.061, suggesting that computer inputs may be positively related to the worker mix 

ratio (column (3)).  Coefficients of most other inputs, plant characteristics, and R2, change little 

across the three specifications reported in Table 1, suggesting that the computer network and 

computer input measures are not related to other inputs or plant characteristics. 

We next assess whether these estimates are sensitive to the assumption that book value 

best measures capital inputs for new plants by estimating the same three specifications for the 

samples of plants that are newly opened between 1992 through 1997.  We create four separate 

samples for plants that have computer investment and are new in each year between 1993 and 

1997, and also combine them into a fifth sample of all plants that are new between 1992 and 

                                              
6 More precisely, the exponential of the coefficient 0.117 is 1.124, or a differential of 12.4 percent.  However, 
because the differences between the exponential and the coefficient are not large, we discuss the coefficient rather 
than the exponential in the text. 
7 While we calculate coefficients for industry dummies λ, and for size dummies γ, we do not report them because 
such coefficients present standard micro data disclosure problems.   
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1997.  Because the empirical findings are qualitatively the same, we report in Table 2 the 

findings for the largest sample size, the 1,755 plants that are new between 1992 and 1997.   

The empirical findings using this broader definition of “new” plant are similar to those 

for plants that are new in 1997.  Computer investment and computer networks both have positive 

and significant relationships to labor productivity, as reported in column (1) of Table 2.   The 

computer network coefficient of 0.126 is significant for relatively new plants with computers, 

controlling for computer and other inputs and plant characteristics.  Computer investment has a 

separate and significant effect, with a coefficient of computer intensity (Kc/L) of 0.046.  When 

computer networks are excluded, computer intensity remains significant, with a slightly higher 

coefficient of 0.049, as shown in column (2) of Table 1.   When computer inputs are excluded 

and computer networks are included alone, computer networks remain significant, with a higher 

coefficient of 0.1510.   

Estimates based on our sample of plants of all ages show the empirical importance of 

selecting samples for which book values of capital should be good proxies for capital services.  

Coefficients of both computer networks and computer input are significant in the estimates using 

samples based new plants, as reported in Tables 1 and 2.  A very different picture emerges from 

estimates based on plants of all ages.  In these estimates, computer networks do not have an 

effect on labor productivity separate from computer inputs.  The network coefficient of 0.004, 

reported in column (4) of Table 2, is not statistically significant.  Computer investment, however, 

is positively and significantly related to productivity, with a coefficient of 0.043.8  Using this 

sample, computer networks do not appear to be a technology that shifts the production function, 

distinct from the productive effect of computer inputs.  Instead, computer networks appear 

simply to be a measure of computer inputs.  However, this also is the sample for which using 

book values of capital as proxies for capital inputs are most problematic. 

 

 

                                              
8 We report only OLS estimates.  Because we use new, or relatively new, plants, we have no good instruments.  The 
two-stage estimates reported in our prior research did not have the expected result of reducing the estimated effect of 
computer networks. When we estimate OLS on the same sample used to in the two-stage estimates, coefficients of 
variables other than networks and computer investment are stable. 
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V. Discussion 

Our empirical findings suggest that using computer networks may be a new technology 

that shifts the production function and is separate from computer inputs.  They also suggest that 

the measurement issues we raise about capital inputs have important empirical consequences, 

because those findings hold only when we have good proxies for capital inputs.  When we do not 

have good proxies, we would conclude instead that our cross-section estimates of the separate 

effects computer networks and computer inputs are subject to omitted variable bias, and that the 

new network variable yields no additional information about the impact of computer use in U.S. 

manufacturing.   

To assess these findings, we compare them with results we obtained in our previous study 

using these data, when only information on computer networks was available.  We also compare 

our findings with those of other researchers.  The final portion of this section discusses two 

aspects of data gaps:  How remaining data gaps may affect our estimates, and what our findings 

imply for priorities in filling them.   

 

A. Comparison with Prior Research Using These Data 

Our findings in this paper are consistent with our previous research using these data that 

showed significant and positive impacts of computer networks on labor productivity in both OLS 

and two-stage regressions (Atrostic and Nguyen 2002).  The appropriate comparison is with 

network coefficients reported in that study based OLS regressions on the 17,787 observations 

sample that we also used in the two-stage estimates.   Those OLS estimates are repeated here in 

column (2) of Table 3.  They show that labor productivity is 3.3 percent higher in plants with 

networks.9   

The new estimates we report for the productivity impact of networks for plants are much 

higher than we found in our previous research.  However, our previous and new estimates are not 

directly comparable because the samples differ in two ways.  The sample we use in this paper is 

                                              
9 In contrast to standard findings in estimates from OLS vs. two-stage regressions, our previous research shows a 
positive and significant computer network effect in both, and the effect estimated in the two-stage regressions, 6.0 
percent, exceeds the OLS estimate of 3.3 percent.  We obtain the 6.0 percent estimate by evaluating the significant 
coefficient of the predicted network variable (0.505) at the mean of the network variable.   
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for plants that are new in 1997 and have computer investment.  Our previous research includes 

plants of all ages, and, because data on computer investment were not available, did not use the 

presence of computer investment to define the sample. 10 

With those two differences in mind, we compare the specification that is most similar in 

the new and previous research.  This specification includes networks but not computer inputs.  

The estimated network impact is 13.6 percent for plants new in 1997 (column (2) in Table 1).  

This is more than four times the 3.3 percent impact of networks in our previous research.  The 

MIX coefficient also is higher for the new plants (0.061 vs. 0.039).  This suggests that newer 

plants that are more productive have a higher proportion of non-production workers.   The 

remaining coefficients are broadly similar across the several age-based samples reported in 

Tables 1, 2, and 3.   

Our finding that computer networks have a higher productivity impact in newer plants 

might seem to lend some support to the vintage capital model, on which the existing empirical 

literature yields mixed findings (Bartlesman and Doms 2000).11  However, what our research 

finds is that computer networks have a higher productivity impact in newer plants.  Those new 

plants have lower average productivity, regardless of whether they have networks.  Also, the new 

findings we report in this paper are for plants that had positive computer investment in 2000.  

Plants with computer investment may be better able to exploit network technology. 

The MIX term, the ratio of non-production to production workers, is the other variable 

whose coefficient differs substantially between the new estimates in this paper and our previous 

research.  Higher ratios of non-production to production workers are frequently taken as proxies 

for higher levels of skills embodied in the workers.  Careful research linking the broad groupings 

                                              
10 We also perform parallel sensitivity assessments between the 12,836-observation data set of plants of all ages that 
we use in this paper 17,787-observation 1999 CNUS-only data used in our previous research (Atrostic and Nguyen 
2002).  Because the same specification estimated on these two data sets yield similar results to those reported here, 
we do not discuss them separately.  
11 The vintage capital model says that newer plants open with the newest, embodied technology, and that plants exit 
when their productivity becomes too low relative to the new entrants.  Consistent with the model are results in the 
literature suggesting that older plants are more likely to exit, but more productive plants are more likely to continue.  
However, Baily, Hulten, and Campbell (1992) find little evidence for the vintage capital model in examining 
transition matrices across years in U.S. manufacturing.  They and other researchers find that plants entering an 
industry have low productivity on average, but move within a few years to both the highest and lowest productivity 
groups.  Similarly, Power (1998) finds that productivity increases with plant age, but finds almost no relationship 
between productivity and the age of investments.  
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of production and non-production workers with reports from the 1990 Decennial Census of 

actual worker education suggests that there can be such embodiment (Doms, Dunne, Trostke 

1997).  However, we cannot make such linkages with our data.  The broad worker classification 

in the MIX term makes it difficult to read too much into any estimated difference in this 

coefficient between groups of plants of different ages. 

 

B. Comparisons with The Information Technology Literature 

Our finding of positive and significant relationships between computers and computer 

networks and productivity is consistent with the recent empirical literature and the plant and firm 

level.  Previous research using the computer investment data for U.S. manufacturing through 

1992 found a positive link with plant-level productivity, with much variation among industries 

(Stolarick 1999 a and b).  Two recent reviews of plant- or firm-level empirical studies of 

information technology (including but not limited to computers) and economic performance 

(Dedrick et al. 2003 and Stiroh 2002) conclude that the literature shows positive relationships 

between information technology and productivity.   

Dedrick et al. (2003) review over 50 articles published between 1985 and 2002, many of 

which are firm-level studies with productivity as the performance measure.  They conclude that 

firm-level studies show positive relationships, and that gross returns to information technology 

investments exceed returns to other investments.12    

Stiroh (2002) conducts a meta-analysis of twenty recent empirical studies of the 

relationship between information technology and the production function.  He also estimates a 

number of specifications used in those studies on a single industry-level database.  The meta-

analysis of 19 firm-level studies that use gross output productivity measures yields a mean 

elasticity of information technology of 0.042, with large variability around that coefficient.  His 

estimates using the single industry-level database yield OLS estimates of computer capital 

                                              
12 They warn against concluding that higher gross returns mean that plants are under-investing in information 
technology.  Most studies do not adjust for the high obsolescence rate of information technology capital, which 
lowers net returns.  Also, total investment in information technology may be understated because most studies 
measure only computer hardware, but not related labor or software, or costs of co-invention, such as re-engineering 
business processes to take advantage of the new information technology. 
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elasticity of 0.047.13  The coefficient estimate, however, is sensitive to econometric 

specifications that account, for example, for unobserved heterogeneity.   

Stiroh’s meta-analysis and basic OLS regression estimates are close to the coefficient of 

0.050 that we report for computer capital elasticity in new plants, in our preferred specification 

in column (1) of Table 1.  It is the same as the coefficient of 0.046 that we report in estimates 

based on our larger sample of plants that are new between 1993 and 1997.   

While we are reassured by this empirical regularity, we do not make overly much of it.  

Our coefficient estimate, like most others, is not adjusted for the high obsolescence rate of 

computers.  It also is subject to other biases whose net effects may be of any sign.  There is a 

downwards bias because computer prices continue to fall sharply.  The price ratio for computers 

between 1997 and 2000, Pc1997 / Pc2000, is certainly greater than one, and in fact is closer to 

three (a 30 percent annual rate of decline).  The plant’s computer investment in 2000 buys much 

more computer input than the same dollar investment would have bought in 1997, so we 

overstate the effective computer input.  There is an upwards bias in our estimates, as in the 

estimates in Stiroh (2002), because we do not measure co-invention.  Co-invention is estimated 

to equal roughly the cost of the hardware and peripheral equipment investment over the life of 

the investment, so omitting it understates computer inputs.   

Our findings also are consistent with a relatively new literature in plant- or firm-level 

research conducted in other countries and summarized in Pilat (2003).  Many studies cited there 

find positive relationships between information technology and productivity.  Several of those 

studies also find positive relationships between using computer networks and productivity (e.g., 

Baldwin and Sabourin (2001) for Canada; Bartlesman et al. (1996) for the Netherlands, and 

Criscuolo and Waldron (2003) for the United Kingdom).  A new paper by Motohashi (2003) 

finds separate positive effects of computer expenditures and computer networks in Japan 

between 1990 and 2001, with larger effects in more recent years, but also with much 

heterogeneity in those effects.   

Stiroh (2002) concludes that information technology matters, but the wide variation in 

                                              
13 Both Dedrick (2003) and Stiroh (2002) attribute the failure of early micro data studies to find a relationship to 
inadequate data with small sample sizes.   
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empirical estimates means that much “depends on the details of the estimation” and “one must be 

careful about putting too much weight on any given estimates.” We agree.  Our results reported 

in this paper and the several specifications reported in our previous research show that theory, 

specification, and measurement issues matter.  Our conclusions also are consistent with the 

empirical micro literature:  computer inputs and computer networks are related to plant-level 

productivity. 

 

C. Important Data Gaps and Implications for Data Collections 

The new computer network and computer investment variables narrow important gaps in 

the data we need to understand how information technology affects plant-level productivity.  The 

plant- or firm-level data needed to address the effect of computer networks seldom existed until 

very recently.  These are among the important data gaps that were identified in reviews of the 

data needed to understand the emerging electronic economy, e.g., Atrostic, Gates, and Jarmin 

(2000), and Haltiwanger and Jarmin (1999), and that some recent data initiatives address 

(Mesenbourg 2001).   

Early studies lacked large representative national samples collected by official statistical 

organizations.  For example, Dedrick et al. report that Barua (1995) draws on 60 business units 

in 20 U.S. companies.  Similarly, Brynjolfsson and Hitt (2000) and (2002) analyze between 500 

and 600 firms for which they combine information from a private database on the firms’ capital 

stock with public financial information from Compustat.  Analyses by these and other early 

researchers used the best data then available, but were constrained by small sample sizes, few or 

no small firms or plants, and lack of data on information technology investment (see, for 

example, parallel discussions in Stiroh 2002 and Dedrick et al. 2003). 

Larger samples of roughly 38,000 plants became available in the 1988 and 1993 Surveys 

of Manufacturing Technology (SMT) for the U.S., but were limited to five two-digit SIC 

industries.  Also, while the SMT collected data on the use of a number of technologies, Doms, 

Dunne, and Troske (1997) stress that they are process and control technologies, and not measures 

based directly on the use of computers.  

The network data in the 1999 CNUS and the 2000 ASM provide critical new data.  

However, they only provide it for one period.  We have enough data to create instruments for the 

network variable and estimate a 2SLS productivity regression.  Because the new network data 
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were only collected once, in 1999, however, we cannot use panel data techniques to address 

many standard plant-level measurement issues, including unobserved heterogeneity beyond those 

input and plant characteristics we control for, such as managerial ability.  Nor can we address 

sources of heterogeneity that are specific to studies of information technology and computers, 

such as reorganization of work processes, because such data are not collected in our sources.   

And long-standing data gaps, such as the absence of information on worker occupation and 

skills, mean that we cannot control for differences among plants in worker quality.  Nor can we 

investigate how the presence of computers and computer networks affect the dynamics of plant 

performance.   

A large literature lays out major data gaps in estimating the impact of information 

technology on economic performance, including Dedrick et al. (2003); Pilat (2003); Atrostic, 

Gates, and Jarmin (2000); and Haltiwanger and Jarmin (1999).  Some of the largest data gaps 

affecting our analysis for the manufacturing sector will be addressed in the 2002 Economic 

Census.  Data will be collected on both the book values of assets and capital expenditures, with 

separate information on expenditures on computer equipment and peripherals.  In addition, 

beginning with data for 2003, the Annual Capital Expenditures Survey (ACES) will collect 

information on both capitalized and expensed expenditures on information and communications 

technology structures, and equipment, including computer software.  However, ACES is 

collected at the company level, so neither totals nor separate detail for expenditures on these 

information technology expenditures will be available at the plant level.   

 

 

VI. Conclusions  

 

 We use new data on computer networks and computer investment and find that both have 

positive and significant impacts on plant-level labor productivity in U.S. manufacturing.   This 

finding suggests that computer networks are a new technology that shifts the production 

function, distinct from the productive effect of computer inputs in the production process.  We 

also show the empirical importance of having good proxies not just for the computer network 

and computer inputs variables of interest, but also for total capital inputs.  When we do not, we 

would conclude that, while computer networks may not be pencils, they are merely computers.    
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New data raise the level in the statistical glass, but also raise our expectations for the 

questions we can answer, without enabling us to address all them (Griliches 1994).  The 

statistical glass nevertheless is filled higher for U.S. manufacturing than for other sectors.  Data 

on variables critical to this analysis, such as computer networks, computer investment, book 

value of capital, and other inputs, such as materials, seldom exist in official U.S. data collections 

for sectors outside of manufacturing.  The impact of computer inputs and computer networks 

remain hard to measure, and their measurement is important. 
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Table 1. Labor Productivity OLS Regression Results: 

Plants New in 1997  
 

Dependent Variable: Labor Productivity  
(T-statistics in parentheses) 

Plants with Positive Computer Investment in 2000 
 New in 1997 All Plants 
Independent 
Variables (1) (2) (3) (4) 

Intercept 
3.769 

(32.63) 
3.051 

(32.36) 
3.266 

(38.00) 
2.949 

(106.03) 

CNET 
.117 

(2.12) 
.136 

(2.44) (--) 
.004 

(0.25) 

Pr (CNET) (--) (--) (--) 
 

(--) 
 
Log (Kc2000/L) 

.050 
(4.36) (---) 

.052 
(4.53) 

.0478 
(16.03) 

MIX 
.040 

(1.69) 
.061 

(2.64) 
.044 

(1.85) 
0.04 

(7.08) 

Log (K/L97) 
.086 

(6.02) 
.093 

(6.42) 
.088 

(6.13) 
.098 

(26.92) 

MULTI 
.161 
4.81) 

.155 
(4.59) 

.167 
(5.00) 

.102 
(11.45) 

Log (M/L) 
.409 

(28.00) 
.422 

(29.15) 
.409 

(27.96) 
.478 

(121.97) 
 
Plant Size Yes Yes Yes Yes 
Industry  
(3-digit NAICS) Yes Yes Yes Yes 
 
R2 .655 .647 .653 .740 

Number of Plants 
 

849 849 849 12,386 
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Table 2. Labor Productivity OLS Regression Results: 
Plants New Between 1992 and 1997  

 
Dependent Variable: Labor Productivity  

(T-statistics in parentheses) 
Plants with Positive Computer Investment in 2000 

 New between 1992 and 1997 All Plants 
Independent 
Variables (1) (2) (3) (4) 

Intercept 
3.009 

(39.78) 
2.916 

(39.26) 
3.117 

(47.90) 
2.949 

(106.03) 

CNET 
.126 

(2.78) 
.1510 
(3.31) (--) 

.004 
(0.25) 

Pr (CNET) (--) (--) (--) 
 

(--) 
 
Log (Kc2000/L) 

.046 
(5.42) (---) 

.049 
(5.71) 

.0478 
(16.03) 

MIX 
.036 

(2.13) 
.057 

(3.51) 
.038 

(2.25) 
0.04 

(7.08) 

Log (K/L97) 
.084 

(8.91) 
.088 

(9.28) 
.085 

(9.01) 
.098 

(26.92) 

MULTI 
.143 

(5.71) 
.137 

(5.43) 
.149 

(5.98) 
.102 

(11.45) 

Log (M/L) 
.456 

(43.38) 
.466 

(44.54) 
.457 

(43.34) 
.478 

(121.97) 
 
Plant Size Yes Yes Yes Yes 
Industry  
(3-digit NAICS) Yes Yes Yes Yes 
 
R2 .678 .672 .665 .740 

Number of Plants 
 

1,755 1,755 1,755 12,386 
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Table 3. Labor Productivity Regression Results  
 

Dependent Variable: Labor Productivity  
(T-statistics in parentheses) 

All CNUS Plants1  
All  With Positive 1992 Computer Investment 

 OLS OLS Two-stage 
Independent Variables (1) (2) (3) 

Intercept 
2.678 

(159.95) 
2.830 

(119.48) 
2.357 

(32.50) 

CNET 
.046 

(5.76) 
.033 

(3.00) (--) 

Pr (CNET) (--) 
 

(--) 
.5052 
(6.41) 

 
Log (Kc2000/L) (--) 

 
(--) (--) 

MIX 
.043 

(12.28) 
.039 

(8.40) 
.037 

(8.12) 

Log (K/L97) 
.091 

(39.86) 
.088 

(28.81) 
.084 

(26.61) 

MULTI 
.114 

(19.30) 
.101 

(12.58) 
.039 

(3.31) 

Log (M/L) 
.515 

(206.74) 
.505 

(148.93) 
.506 

(150.48) 
 
Plant Size Yes Yes Yes 
Industry  
(3-digit NAICS) Yes 

 
Yes Yes 

R2 .756 
 

.750 .756 

Number of Plants 
 

29,808 
 

17,7873 17,7873 
1 All coefficients are reported in Atrostic and Nguyen 2002 
2 Evaluating the coefficient of the predicted probability at a point consistent with our data yields an estimated 

network effect of six percent.  This estimated network effect is slightly higher than in the OLS estimates of 
column (2). 

3 The number of observations in columns (2) and (3) is smaller than in column (1) for several reasons.  Some 
plants present in the 1999 ASM did not exist in 1992.  Plants in existence in 1992 may not have reported 
the information on the 1992 computer investment from the 1992 CM that is used to predict CNET in the 
two-stage estimates.  The sample in column (2) is restricted to the sample in column (3). 

. 
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Appendix:  Data and Empirical Specification of Variables 

 

Data 

 
The 1999 Annual Survey of Manufactures Computer Network Use Supplement was 

mailed to the plants in the ASM sample in mid-2000.  The supplement asked about the presence 

of computer networks, and the kind of network (EDI, Internet, both).  It also collected 

information about manufacturers’ e-commerce activities and use of e-business processes.  The 

questionnaire asked if the plant allowed online ordering and the percentage of total shipments 

that were ordered online.  Information on online purchases was also asked.  In addition, 

information was collected about the plant’s current and planned use of about 25 business 

processes conducted over computer network (such as procurement, payroll, inventory, etc., “e-

business processes”) and the extent to which the plant shared information online with vendors, 

customers, and other plants within the company. 

 

The Annual Survey of Manufactures (ASM) is designed to produce estimates for the 

manufacturing sector of the economy.  The manufacturing universe consists of approximately 

365,000 plants.  Data are collected annually from a probability sample of approximately 50,000 

of the 200,000 manufacturing plants with five or more employees.  Data for the remaining 

165,000 plants with fewer than five employees are imputed using information obtained from 

administrative sources.  Approximately 83 percent of the plants responded to this supplement.  

All CNUS data are on the NAICS basis.  Because the data are only from respondents to the 

CNUS, and are not weighted (see the discussion in www.census.gov/estats), our results may 

apply only to responding plants.  We note, however, that the plants responding to the CNUS 

account for a substantial share of the U.S. manufacturing employment and output (about 50 to 60 

percent) represented in the ASM.   

 

Variables 

•  Capital (K):  Data on capital services are the appropriate measure for production 

function estimation and productivity analysis.  Because such data are not available at the micro 
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level, we use book values of gross capital stocks (including buildings and machinery assets) 

collected in the 1997 CM as a proxy for K.  We use 1997 data on capital intensity (K/L) because 

data on total capital stock are collected in the 1997 Economic Census but not in the ASM.  

Although we recognize that these data have limitations as measures of capital services, it is 

widely recognized that it is difficult to handle these problems in cross-sectional analysis. We 

therefore follow many previous studies (e.g., McGuckin et al., 1998 and Greenan, Mairesse, and 

Topiol-Bensaid (2001)) and use book values of capital as a proxy for capital input, K.  This 

implies that services are proportional to the book value of capital.  This assumption is made more 

reasonable by the controls for plant characteristics in our regressions 

 •  Materials (M): are the sum of values of materials and parts, values of energy consumed 

(including electricity and fuels) and values of contract work. 

 •  Skill Mix (MIX).  This variable is defined as the number of non-production workers 

(OW) divided by total employment (TE) in the plant, as reported on the 1999 ASM.  Computer 

networks require highly skilled workers to develop and maintain them.  Productivity might thus 

be higher at plants with a higher proportion of skilled labor because these workers are able to 

develop, use, and maintain advanced technologies, including computer networks.  But 

applications such as expert systems may allow a function to be carried out with employees who 

have lower skill levels, or with fewer employees.14   

                                              
14 Occupational detail would be desirable to test the relationship among productivity, networks, and the presence of 
such skilled occupations as computer programmers and systems support staff  (e.g., Greenan, Mairesse, and Topiol-
Bensaid (2001) and Motohashi (2001)).  However, the ASM only collects information on the total numbers of 
production and non-production workers in the plant, with no further detail by process, function, or worker 
characteristic.  Dunne and Schmitz (1992) found that plants in the 1988 SMT that used advanced technologies had 
higher ratios of non-production to total workers.  Doms, Dunne, and Troske (1997) find that plants that adopt new 
technologies have more skilled workforces both before and after adoption.  As with many other plant-level studies, 
we use this employment ratio to proxy for skill mix in our productivity estimates.  Production workers accounted for 
about one-quarter (27 percent) of employment among CNUS respondents in manufacturing.  This share is similar to 
shares reported for the five two-digit U.S. Standard Industrial Classification (SIC) industries in the 1988 and 1993 
SMTs (e.g., McGuckin et al. 1998).   
 
However, some production workers are in highly skilled occupations, and some non-production workers are in 
relatively less skilled jobs such as janitors, and the literature is scarcely unanimous that the nonproduction labor 
share is a measure of skill (e.g., Dunne, Haltiwanger and Troske (1997) and  Berman, Bound, and Griliches (1994).  
We follow Dunne et al. (2000) in both using this measure and being cautious in interpreting it as an indicator of 
skill. 
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• SIZE:  Plant size is specified as a standard series of six dummy variables.  About 30 

percent of the plants in our core CNUS sample have fewer than 50 employees, 20 percent have 

between 50 and 99 employees, about 30 percent have between 100 and 250 employees, and the 

remaining 20 percent are in larger plants.  

•  Multi-unit firms’ plants (MULTI):  Many manufacturing plants are part of  multi-unit 

firms, so employment size alone is an inadequate indicator of available resources, managerial 

expertise, and scale.  We construct a dummy variable, “MULTI,” that takes on the value of one if 

the plant is part of a multi-unit firm, and equals zero otherwise.  Nearly two-thirds of the plants 

in our sample are part of a multi-unit firm. 

 •  Industries (IND) : All previous studies of plant-level behavior note substantial 

heterogeneity among plants within detailed manufacturing industries, as well as between detailed 

industries.  There are 21 3-digit NAICS manufacturing industry groups in our sample (NAICS 

codes 311- 316, 321- 327 and 331-337).  Industry dummies (“IND”) are included in the basic 

empirical model specifications to capture industry-specific effects on plant-level labor 

productivity.   
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